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We give a rigorous proof of mean-field critical behavior for the susceptibility 
(7 = 1/2) and the correlation length (v = 1/4) for models of lattice trees and lat- 
tice animals in two cases: (i) for the usual model with trees or animals construc- 
ted from nearest-neighbor bonds, in sufficiently high dimensions, and (ii)for a 
class of "spread-out" or long-range models in which trees and animals are con- 
structed from bonds of various lengths, above eight dimensions. This provides 
further evidence that for these models the upper critical dimension is equal to 
eight. The proof involves obtaining an infrared bound and showing that a 
certain "square diagram" is finite at the critical point, and uses an expansion 
related to the lace expansion for the self-avoiding walk. 

KEY WORDS: Lattice animals; branched polymers; upper critical dimen- 
sion; lace expansion; critical exponents; mean-field behavior. 

1. THE M O D E L S  A N D  RESULTS 

In  recent years there has been some progress in the rigorous study of criti- 
cal p h e n o m e n a  for the self-avoiding walk and for percolation,  above the 

upper  critical d imension,  where mean-field behavior  takes over. The basic 
idea in this work is due to Brydges and  Spencer, (1~ who used their lace 
expansion to prove mean-field behavior  (simple r a n d o m  walk scaling) for 
the weakly self-avoiding walk above four dimensions.  A simplified con- 
vergence proof  for the lace expansion was given in ref. 2, where it was 

proven that  the mean  square displacement of the strictly Self-avoiding walk 
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is linear in the number of steps, in sufficiently high dimensions. Further 
results for the strictly self-avoiding walk were obtained in refs. 3-5. 

In ref. 6 it was shown how an expansion related to the lace expansion 
could be used to prove that the triangle condition (7) is satisfied in suf- 
ficiently high dimensions for independent nearest-neighbor percolation, and 
above six dimensions for a class of "spread-out" models of independent 
percolation. The triangle condition is known rigorously to imply that a 
number of percolation critical exponents take their mean-field (Bethe 
lattice) values. (7 9) Further results for percolation were obtained in ref. 10. 

An important feature in this work (both for percolation and the 
self-avoiding walk) has been the proof of an infrared bound. Such a bound 
has played a major role in the rigorous analysis of the critical behavior of 
Ising and ~4 models,(11 13) in particular in proving triviality above four 
dimensions. A general proof of the infrared bound is known for spin 
models which satisfy reflection positivity, (1l) but no general proof of the 
infrared bound is known for the self-avoiding walk, percolation, or lattice 
animals. In fact, for percolation and lattice animals there is reason to 
believe that the infrared bound is violated below the upper critical dimen- 
sion.(14 16) 

In this paper we apply expansion methods to the study of lattice trees 
and lattice animals (also known as branched polymers) on the infinite 
d-dimensional hypercubic lattice Z a. By lattice trees we mean connected 
bond clusters without closed loops, and by lattice animals we mean connec- 
ted bond clusters possibly with closed loops (see Section 1.1 for precise 
definitions). These models are of interest in polymer chemistry as well as in 
statistical physics. In addition, their statistics provides a natural problem in 
graph theory, which, like the statistics of the self-avoiding walk, has so far 
eluded a full solution by combinatoric or other methods. 

A field-theoretic representation suggests that the upper critical dimen- 
sion for lattice trees and lattice animals is eight, (is) i.e., above eight dimen- 
sions all critical exponents take their mean-field values, and below eight 
dimensions they do not. This suggestion is supported by the rigorous work 
of refs. 16-18. In particular, in refs. 17 and 18 it was shown that if the 
"square diagram" is finite at the critical point, as is believed to be the case 
for d >  8, then the critical exponent 7 takes its mean-field value of 1/2. To our 
knowledge there is still no proof that mean-field values of critical exponents 
are incompatible with all d <  8. (For percolation it has been proven that 
mean-field critical exponents are incompatible with d <  6. (19'2~ A partial 
result in this direction is the proof in refs. 17, 18, and 21 that the critical 
exponent v for the correlation length (assuming it exists) cannot take its 
mean-field value in less than four dimensions. 

Our main result is a proof of mean-field power law behavior for the 
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susceptibility (7 = 1/2) and correlation length of order two (v = 1/4) .for 
lattice trees and lattice animals in two situations: (i)for systems involving 
only nearest-neighbor bonds, in sufficiently high dimensions, and (ii) for 
"spread-out" models involving both long and short bonds, above eight 
dimensions. On the basis of the hypothesis of universality, all critical 
exponents are believed to be the same for (i) and (ii), so the results for the 
spread-out models support 7 = 1/2 and v = 1/4 also for the nearest-neighbor 
model above eight dimensions. This provides further evidence that the 
upper critical dimension is eight. 

The proof uses an expansion quite similar to the lace expansion for the 
self-avoiding walk, which allows models (i) and (ii) to be treated as a small 
perturbation of corresponding simple random walk models. The small 
parameter responsible for convergence of the expansion is closely related to 
the square diagram (defined below). The analogue of this quantity for the 
usual nearest-neighbor simple random walk is small in very high dimen- 
sions, and is small also in any dimension above eight for a walk with 
variable-length (possibly quite long) steps, but it is infinite in either case if 
d~< 8. It is not at all obvious that the square diagram is finite for (i) and 
(ii), let alone small, and one of our results is to prove that it is finite. We 
also prove a related infrared bound. 

The mean-field bound 7 >~ I/2 was proven in ref. 16 for all dimensions. 
The opposite bound ~/~< 1/2 was shown in refs. 17 and 18 to be a conse- 
quence of the finiteness of the square diagram. Thus, it suffices to prove 
that the square diagram is finite to conclude that y = 1/2. The power-law 
behavior of the correlation length, with exponent v = 1/4, follows from the 
arguments employed to prove the finiteness of the square diagram. 

The exponent v is often defined alternatively as the power at which the 
rate of exponential decay of the two-point function vanishes at the critical 
point. A rigorous proof that this exponent equals 1/4 for models (i) and (ii) 
can be obtained by combining our expansion with the method of ref. 10, in 
which analogous results were obtained for percolation. Formally, 7 and v 
are related respectively to the exponent 0 for the number of n-bond trees 
or animals and to the exponent (also called v) for the radius of gyration of 
n-bond trees or animals. Currently we have no proof of power law behavior 
for these microcanonical (as opposed to canonical) ensemble quantities. 

1.1 .  T h e  M o d e l s  

We consider lattice trees and lattice animals on the infinite 
d-dimensional hypercubic lattice Z d. An element of Z d is called a site, and 
an unordered pair {x, y}, where x, y are distinct sites, is called a bond. For 
now we restrict our attention to the nearest-neighbor bonds, for which 
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IIx-ylh2 = 1; later more general bonds will be considered. A lattice tree is 
a connected set of bonds which has no closed loops. Although a tree T is 
defined as a set of bonds, we write x e T if x is an endpoint of some bond 
of T. We denote the number of bonds in a tree T by I Tt. A lattice animal 
is a connected set of bonds, which may contain closed loops. We denote 
a typical lattice animal by A and the number of bonds in A by I AI. The 
number of sites in a tree or animal C will be denoted l[ CI[. In general, 

Lr 
]kC[I- 1 ~ ICI ~ =  IIC[I z 

(1.1) 

where ~e is the coordination number (N = 2d for the nearest-neighbor 
model, and more generally ~ is the maximum number of bonds which can 
emerge from one site). In fact, for trees the left inequality is always an 
equality. 

The two-point function for trees or animals is defined, for sites 
x, y ~ Z  a, by 

Gz(x, y)  = ~ z Irl, G~(x, y ) -  ~ z IAI (1.2) 
T ~ x , y  A ~ x , y  

where z is a nonnegative parameter  called the activity. The superscript a 
designates animals as opposed to trees. The susceptibility is defined by 

= 6 (O,x)-S'IkrIl z 

x~z~ r (1.3) 

Z~(z) - ~ G~(O, x)=- ~'HAIL2 z IAI 
x ~ Z  d A 

where S '  denotes a sum running over one tree T (or one animal A) in each 
equivalence class modulo translation. 

We denote by an and a~, respectively, the number of trees and animals 
containing n bonds, modulo translation. Thus, for example, a0 = a~ = 1, 
al - . . . . . .  a 1 - d, and a2 - a2 - d ( 2 d - 1 ) .  The existence (finite and nonzero) of 
the growth constants 

1/n = sup aXn/n ,~ = lira a n 

~ ~ 1  (1.4) 
2~ = lim (aa) ~/~ = sup (a~,) 1In 

n ---~ o o  n > ~ l  

can be shown using subadditivity arguments (see ref. 22 for trees and ref. 23 
for animals). In particular, 
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It was recently shown in ref. 24 that the growth constants a and aa, defined 
by replacing a,  and a2 by the numbers sn and s2 of n-site trees or animals, 
satisfy the strict inequality a < aa. It is expected that 

an ~ n - ~ a2 ~ n - 02 an 
(1.6) 

a 0 11 
S n ~ n ~  s n ~ n G a 

with the same exponent 0 in all cases. [The notation ~ in (1.6) means that 
the left side is bounded uniformly above and below by positive multiples of 
the right side.-] Note that (1.5) implies that 0~> 0. The mean-field (Bethe 
lattice) value of 0 is 5/2, and this is expected to be correct on the lattice Z d 
for d > 8 .  

The susceptibility has been proven to diverge at the critical point 
(~) -2  -~" in fact, Z c - -  ( a )  , 

)(a)(z) ~> const �9 (zl. a) - z) - 1/2 (1.7) 

See refs. 16 and 18 and also Section 1.3 below. (Here the superscript a in 
parentheses is to be omitted or retained across the equation; we will use 
this convention throughout the paper to discuss trees and animals 
simultaneously.) On the basis of (1.6), it is expected that 

z~a)(z)  ~ (z~7) - z )  - ~  ( ] . s )  

with 7 = 3 -  0. This can readily be seen for the analogue of )(~) defined by 
replacing z trl and z lap in (1.3) by z Ilrtl and zIIAH; the same behavior is expec- 
ted for the bond-weighted quantities. Note that (1.7) implies that ? >/1/2, 
and hence [assuming (1.6)] that 0 ~< 5/2. The mean-field value of 7 is 1/2, 
which also is expected to be correct for d >  8. For  d <  8, 7 and all other 
critical exponents are expected to be dimension dependent. 

For  z < ~(~) we define the correlation length of order two r by 

~(~)(z~- ~Z~ Ix! 2 G~)( O, x) ] ~/2 (1.9) 

' ' - L  J 
It is expected that the correlation length diverges at the critical point via 
a power law: 

~(~)(z) ,-~ (z~ ~) - z )  -~ (1.10) 

The mean-field value of v is 1/4 (see, for example, ref. 16) and it is expected 
that v = 1/4 also for Z d when d >  8. An alternate correlation length is ((~)(z) 
(the inverse mass gap), defined by 

log GT)(0, n(1, 0,..., 0)) 
~ ) ( z ) -  1 = _ lim sup 

n ~ o o  n 
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It is expected that as z 7 7(a) 

and that ~=v. Formally v also describes the behavior of the radius of 
gyration R ~ of n-bond trees or animals: 

R(~')(n)2=- ~?'c~~ IX--2cl2 n 2~ (1.11) 

where C denotes a tree for R and an animal for R% and s  is the center 
of mass of C. In fact, (~<a))2 is exactly twice the average squared radius of 
gyration: 

(~(a))2 = 2 Z ,  z" Y~c ~ 0,1Cl = n N CN- R(a)(n) 2 

Z.z"  IICII 

At the critical point the two-point function is expected to decay at 
large distances according to a power law 

GC~!2~(O, x ) ~  Ix l -u -z+ ,n  (1.12) 

The critical exponents 7, v, t /are believed on the basis of scaling theory to 
satisfy the identity y = ( 2 -  t/)v. For d >  8 it is expected that t /= 0, while for 
2 ~ d < 8  it is expected that t/ is negative. ~ In particular, for d = 3 ,  
Parisi-Sourlas dimensional reduction (2s) predicts that t /= -1 .  (~6) In terms 
of the Fourier transform 

d~'(k)  = 2 (a) k~[__7.[,g]d G~ (0, x) e 'kx, 
X ~ Z  d 

(1.12) is consistent with the behavior 

1 
k 2 _  q 

for k near 0. Thus, we expect that for d >  8, G should obey the infrared 
bound 

C 
4~),(k) ~< ~ ( 1 . 1 3 )  

If the infrared bound (1,13) is obeyed, then it would follow that for 
d > 8 the square diagram 

=- y ,  G z (0, w) G z(a)(w, x) Gz(a)(x, y) G~za)(y, O) 
w,x ,  y E Z  d 

= I (1.14) 
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would be finite at the critical point. It is known that if [] (")(zl ~>) < oo, then 
(1.8) holds with 7 = 1/2, in the sense that 

c ~-(+) - z)-1/2 <~ ~(")(z) <~ c2(z~ a~ - z ) -  l/2 (1.15) 1\'~c 
for some positive constants c~ < c2. In fact, the lower bound holds quite 
generally, ~ while the upper bound follows from the finiteness of the 
square diagram; (17'18) see Section 1.3. (References 16-18 explicitly treat only 
the nearest-neighbor model, but the methods apply equally to the 
spread-out models.) 

The square diagram gets its name from the following Feynman 
diagram notation, which we use repeatedly. We use 0 x to denote 
the two-point function or propagator c;,(a)ta x). In any diagram we use the 
convention that each line denotes a propagator, unlabeled vertices are 
summed over the lattice, and in a diagram with all vertices unlabeled one 
vertex is fixed at the origin. Thus, 

[] (">(z) = I ~ ! l  

A shaded loop involves an unconstrained sum over vertices, whereas in an 
unshaded loop we use the convention that the summation over vertices is 
restricted to omit the coincidence of all vertices on the loop. For example, 

s } a ) ~  [~ (a)(z) -- G(a)(o'  0)4 = 1- - - - - -/ (1.16) 

tf'v'%f%f%c%f~ 

In this paper we prove mean-field behavior for z(a)(z) and r in 
sufficiently high dimensions. The proof uses an expansion related to the 
lace expansion for the self-avoiding walk, whose convergence is assured by 
taking d sufficiently large. In order to obtain mean-field behavior right 
down to d =  8 +, we consider a model of "spread-out" trees and animals 
which introduces a small parameter to replace d 1. Similar models were 
considered for percolation in ref. 6. In the spread-out model, trees and 
animals can be built from any bonds {x, y} ,  x, y e Z  d, x # y ,  for which 
y -  x ~ (2\{0}, where ~2 c R a is a given compact set with finitely many con- 
nected components and positive Lebesgue measure. In particular, we con- 
sider s of the form f2L= {X: x / L 6 f 2 t }  , where L is large and (21 is a fixed 
compact subset of R d which is Zd-invariant (i.e., invariant under reflections 

822/59/5-6-25 
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in the coordinate hyperplanes and rotations by z~/2 about the coordinate 
axes). 

For the spread-out models we define the two-point function 
G~a)'C(x, y) by replacing the sums over nearest-neighbor trees and animals 
in (1.2) by sums over trees and animals built from bonds {x, y} for which 

~(~),L ~),L, and ~(~,L by y - -x~12L\{0  }. Then we define Z(~)'L(z), _~ , 
replacing G(fl ) by G(z ~)'L in (1.3), (1.9), and (1.14). Similarly, we use a}, ~)'L 
to denote the number of spread-out trees or animals containing exactly n 
bonds. 

1.2. The Results  

In this paper we prove the following theorems: 

Theorem 1.1. For the nearest-neighbor models of lattice trees and 
lattice animals there is a do > 8 such that for d~> do: 

(a) The infrared bound 0~<G~a)(k)<~e/k: is satisfied uniformly in 
z<z~ =). The square diagram (0) (a) [] (z c ) is finite, and hence 7=  1/2 in the 
sense that (1.15) is satisfied. 

(b) v = 1/4 in the sense that there are constants 0 < c3 < c4 < ~ such 
that for z less than but near 7(~) - c  ~ 

C r z ) _ l / 4  3~,Z'c ~ ~ ( a ) ( z ) ~  c [ ~ ( a ) -  z ) - l / 4  4\Z, c 

Theorem 1.2. Let 0 1 be a compact Za-invariant subset of R d with 
finitely many connected components and positive Lebesgue measure. Then, 
for any d >  8 there is an L0 = Lo(d, f21) such that for L t> L0 the spread-out 
models of lattice trees and lattice animals defined by O1 obey (a) and (b) 
of Theorem 1.1. 

On the basis of the hypothesis of universality, all critical exponents 
for the spread-out model are expected to be the same as for the 
nearest-neighbor model, independent of O1. In particular, Theorem 1.2 
suggests that V = 1/2 and v = 1/4 for the nearest-neighbor model above 
eight dimensions. Theorem 1.2 shows that above eight dimensions 7 and v 
are independent of f21 if L is sufficiently large, which supports the 
hypothesis of universality. 

The proofs of Theorems 1.1 and 1.2 are essentially the same, as are the 
proofs for trees and animals. As mentioned in Section 1.1 and further 
explained in Section 1.3, to show that 7 = 1/2, it suffices to show that the 
square diagram is finite at the critical point. For this, we first obtain a 
uniform bound on the square diagram below the critical point. It will then 
follow from the monotone convergence theorem that the square diagram 
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is also finite at the critical point. The infrared bound is proved 
simultaneously. The basic mechanism in the proof was used in ref. 2, where 
in particular it was shown that the bubble diagram for the self-avoiding 
walk is finite at the critical point. It involves an easy continuity argument 
for the square and the weighted triangle (defined in Section 2.3) as functions 
of the activity z, together with a more difficult argument which uses the 
lace expansion to show that when d or L is sufficiently large, if S(z) (z < zc) 
is less than 4e, then in fact it is less than %, where e is proportional to d-1 
or an inverse power of L. In the course of the proof it can be seen that 

~ ) ( z )  ~ ~ z(~)(z) 
which then gives (b). 

Throughout the paper we shall concentrate on trees, commenting 
briefly on the modifications needed to treat animals. The remainder of the 
paper is organized as follows. In Section 1.3, we discuss the relation 
between (1.15) and the finiteness of the square diagram in more detail. In 
Section 2, we recall the lace expansion and show how it can be applied to 
trees and animals, both nearest-neighbor and spread-out. In Section 3 the 
proof of Theorem 1.2 is given. The proof of Theorem 1.1 is almost identical, 
and the details are not repeated. Finally, in an Appendix we collect some 
Gaussian (simple random walk) bounds which are needed in Section 3. 

1.3. The S k e l e t o n  Inequa l i t ies  

The upper bound of (1.15), which implies that 7 ~< 1/2, was shown in 
refs. 17 and 18 to follow from the finiteness of the square diagram, while 
the lower bound of (1.15), which implies that 7 >~ 1/2, holds in general. (16'1s) 
In this paper we prove that under the hypotheses of Theorem 1.2, S~  ) ~ 1 
and G(a)(0 0 )~4 .  (Similar bounds hold under the hypotheses of 

z c k 

Theorem 1.1.) This is a stronger statement than 2 ( z c ) < o e ,  and it is 
actually less involved to prove that the stronger statement implies that 
~;~< 1/2 than it is to prove that finiteness of the square diagram implies 
~/~< 1/2. To make this paper more self-contained, we briefly explain the 
argument in this section. 

The argument follows the basic strategy presented in refs. 16 and 18. 
To simplify the notation, we omit labels (a), L, and z, and use C to denote 
either a tree or an animal. By definition, 

dZ(~) 
z d~ = ~  ~' ICIzlCt 

x C~O,x  

By (1.1), 

(HCll-1)zlCl<~ ~ IClztCl<~ ~ -~ptCJJz Jcl (1.17) 
C~O,x  C~O,x  C-~O,x 
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Let 
G 3 ( 0  , x, y) = 2 ZlCl 

C~O,x,y 

Then from (1.17) we have 

G3(0, x, y) -- Z(z) ~< z ~ . . ~  2 Z 63(0, x, y) 
x, y x, y 

As we briefly explain below, G3(0, x, y) can be bounded above and 
below using the first- and second-order skeleton inequalities [ref. 16, Eqs. 
(5.63), (5.69); ref. 18, Eqs. (5.8), (5.14)]: 

X X 

1 
G(O, 0) ----.-.--5 0 -- 0 

y Y 

y X 

ky 

X 

0 

Y 

X 

~< G3(O, x, y) ~ 0 

Y 

(1.18) 

[In fact, (5.14) of ref. 18 is not correct for animals as stated: the factor e 2p 
on the right side should be replaced by G~(0, 0)-2.]  The loops in (1.18) are 
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unshaded, i.e., the squares on the left side involve the quantity S given in 
(1.16) rather than ~ .  As a result, 

dz(z) 3 
g(z) 3 [G(0, O)-2-3S]- -Z(z )<~z- -~z<~- fZ(z  ) (1.19) 

If S<I/[3G(O,O) 2] uniformly in z<~z c, then (1.19) provides uniform 
positive upper and lower bounds on (d(z(z)-Z)/dz[, which upon integration 
yields (1.15). In this paper we in fact prove that under the hypotheses of 
Theorem 1.2, G(0,0)~<4 and S< . I  uniformly in z<~z c (a similar result 
holds for the nearest-neighbor model); see Section 3.l. 

We now briefly sketch the derivation of the skeleton inequalities 
(1.18). For trees the situation is very similar to that described in some 
detail in ref. 16. The derivation of the skeleton inequalities for animals is 
more delicate, and we discuss only this case. 

For the first-order skeleton inequality [the upper bound of (1.18)], we 
first note that for any animal A contributing to G3(xl, x;, x3), we can find 
a site w~A (possibly equal to one of xl, x z, x3) and paths in A (possibly 
consisting of the single site w) from Xl to w, from w to x2, and from w to 
x3, with these three paths intersecting only at w. The choice of w and the 
three paths will in general not be unique, but we can impose an order on 
the set consisting of such sets of three paths which will allow us to associate 
to each animal A a unique site w and triple of paths, as above. Next we use 
some algorithm (for example, see the proof of Lemma 2.1) to decompose A 
into three animals A~, A2, A3 containing the three paths, with A = A l w  
A2wA3 (as sets of bonds), and A i c ~ A j = ~ ,  i # j ,  again as sets of bonds. 
Since A =A 1 ~ A z u A 3 ,  different A's have different decompositions A~, 
A2, A3, and hence the upper bound of (1.18) can be obtained by over- 
counting: 

x2, x3) <. Z Z z,A,j + + = Z G(x,, w) C(w, G(w, 
w A l ~ w , x  I w 

Similar upper bounds wil! be needed in Section 2.2. 
For the second-order skeleton inequality [the lower bound of (1.18)], 

we bound the three-point function G3(x~, x2, x3) below by summing over 
only those A ~ x~, x2, x3 for which there is a unique pivotal site w, i.e., a 
site such that the removal of all bonds in A having endpoint w will discon- 
nect xi from xj ( i r  For such A there are three animals A~, A2, A 3 such 
that (1) A~nAj= {w}, i C j ,  as sets of sites, ( 2 ) A ~ x ~ ,  w, ( 3 ) A = A ~ w  
A;wA3,  as sets of bonds. Although the animals A~, A2, A3 are in general 
not uniquely determined, the only ambiguity in the composition of the A~ 
is due to possible "branches" in A, emanating from w, which do not include 
one of the x,. We remove this ambiguity by assigning all such branches to 
A~; the animals A2 and A 3 are then "trimmed at w" in the sense that any 
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bond emanating from w in A 2 o r  A 3 is the first step in a self-avoiding walk 
in Aj from w to xj. This gives the lower bound 

G3(xl, x2, x3) 

>/~  ~ ZlAII + IAzl + IA31I[A2 and A 3 are trimmed at w] 
w m l ~ X i ,  w 

x I[Ai~ Aj= {w}, i ~ j] 

where I denotes the indicator function. 
Now by inclusion-exclusion we have 

I[Aic~ Aj= {w}, i ~ j] 

>~ I -  I[AI~A2~ {w}]-I[A2~A3~ {w}]-I[AI ~A3~ {w}] 

where = denotes strict containment. Using 

I[Alc~Az= {W}]zlA~I+IA21<<. ~ G3(w, xl, y)a3(w, x2, Y) 
A I  ~ W, X l  y ~- w 
A 2 ~ w ,  x 2 

together with the first-order skeleton inequality leads to the lower bound 

G3(x1, x2, x3) 

>/ E G(Xl, w) G'(w, x2) G'(w, x3) 
rv 

X2 X 2 

- -  X 1 - -  Xl 

X3 X 3 

X2 

X1 

X3 
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where 

G'(w, x ) =  ~ zrAlI[A is trimmed at w] 

The lower bound of (1.18) now follows from the fact that 
G'(w, x) >>. G(O, O) -~ G(w, x). 

The skeleton inequalities (1.18) can be derived as above for both trees 
and animals when the two-point function is defined as in (1.2) using the 
weight z lcl. These inequalities are, however, problematic for animals if the 
two-point function is defined using the weight z IIAIr, and it is because of this 
and similar difficulties with the latter weight which would occur in Sec- 
tion 2.2.2 that we have used the weight z IAI. More precisely, our analysis 
goes through if we either (i)define animals as sets of bonds and use the 
weight z IAi, or (ii) define animals as sets of sites and use the weight z IdA'l. 
The latter case was considered in ref. 18. However, if we define animals as 
sets of bonds and use the weight z I~ll, then we encounter difficulties arising 
from the fact that there can be a large number of different bond animals 
with the same set of endpoints of their bonds (and thus with the same 
weight z ILALI ). 

2. T H E  E X P A N S I O N  

2.1. D e r i v a t i o n  of  the  Expansion 

In this section we derive the expansion used in the proof of 
Theorems 1.1 and 1.2. The expansion is closely related to the lace expan- 
sion for the self-avoiding walk./1) In Section 2.1.1 we consider in detail the 
case of lattice trees, nearest-neighbor or spread-out, and then indicate in 
Section 2.1.2 how the expansion is modified for lattice animals. We omit 
the label L indicating quantities for the spread-out trees or animals. 
Bounds on each term of the expansion are obtained in Section 2.2. 

2.1.1.  The Expansion for Trees. Given two distinct sites x, y 
and a tree T~ x, y (nearest-neighbor or spread-out), the backbone ~jr(x, y) 
of T is defined to be the unique path, consisting of bonds of T, which joins 
x to y. Usually x and y are understood and we write simply /jr  for 
/jr(X, y). Sites in the backbone are labeled consecutively from x to y, 
beginning with / j r ( 0 ) = x  and ending at (say) / J r (n )=  y. Removal of the 
bonds in the backbone disconnects the tree into n + 1 mutually noninter- 
setting trees Ro ..... R,,, which we refer to as ribs. This decomposition is 
shown in Fig. 1. Ribs are defined as sets of bonds, but as for trees and 
animals, we write R ~ x if a site x is an endpoint of some bond of the rib R. 
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X 

Ro 

I R7 

J 

l_ 
y 

- - 1  

Fig. 1. Decomposition of a tree T containing sites x and y into its backbone ~T(X, y) and 
ribs R0 ..... R,. The backbone is indicated by a bold line. 

Given  a set R = {Ro ..... R ,}  of n + 1 trees Rj, we define 

O if Rs and Rt share a c o m m o n  site (2.1) 
q/st(R) = if R,  and Rt share no c o m m o n  site 

Then  the two-poin t  function can be writ ten 

Gz(0, x ) =  ~ z l ~ b [ ~  ~ ZIR'l I ~t [ l+~ / / s t (R) ]  (2.2) 
c o : 0 ~ x  i = 0  R~aJ(z) O<~s<t<~ lea[ 

where each sum over  Ri is a sum over  trees and R = (Ro,..., RI~I). The  sum 
over  co is the sum over  all simple (possibly self-intersecting) walks f rom 0 
to x, a l though walks which do have self-intersections give zero contr ibut ion 
to (2.2). Fo r  neares t -neighbor  trees, co takes neares t -neighbor  steps, while 
for spread-out  trees, co takes steps (u, v) with v -  u ~ E2L\{0}. AS usual, [Ri[ 
and  Lcol denote  the number  of bonds in Ri and co, respectively. 

To  describe the expansion,  it is necessary to first in t roduce some ter- 
minology.  Given  an interval I =  [a, b ]  of nonnegat ive  integers, we refer to 
a pair  st of elements of I as an edge. A set of edges is called a graph. A 
graph  F is said to be connected if bo th  a and b are endpoints  of edges in 



Lattice Trees and Lattice Animals 1483 

F, and if, in addition, for any c e (a, b), there are s, t e [a, b] such that 
s < c < t with either (1) st e F, or (2) ct ~ F and sc ~ F. This notion of con- 
nectedness is less restrictive than that used in ref. 1, and is better suited for 
dealing with the interaction between ribs. The set of all graphs on [a, b] 
is denoted ~ [ a ,  b], and the set of all connected graphs (f[a, b]. A lace is 
a minimally connected graph, i.e., a connected graph for which the removal 
of any edge would result in a disconnected graph. The set of laces on [a, b] 
is denoted by ~ [ a ,  b]. Given a connected graph F, the following prescrip- 
tion associates with F a unique lace 5~ The lace 5.~ r consists of bonds 
S l t l ,  $2 t2 , . . .  , where 

s l=a,  t l = m a x { t : a t e F }  

ti+l =max{t :  st~F, s<~ ti} 

si = rain{s: sti e F} 

Given a lace L, the set of all bonds s tCL such that 5eL~ {s,} = L  is denoted 
C~(L). Bonds in Cg(L) are said to be compatible with L. 

Let 

K[a, b] = H (1 + ~ , )  (2.3) 
a ~ s < t ~ b  

By expanding the product in (2.3), we obtain 

K[0, b]= E 
F s  J~[O,b] s t e F  

The contribution to the sum on the right side due to all graphs F for which 
0 is not in an edge is exactly K[1, b]. To resum the contribution due to the 
remaining graphs, we proceed as follows. If F does contain an edge ending 
at 0, let a(F) be the largest value of a such that the set of edges in F with 
an end in the interval [0, a]  forms a connected graph on [0, a]. Then 
resummation over graphs on [a + 1, b] gives 

b 

K[O,b]=K[1,  b]+ ~ ~ I~ ~l , ,K[a+l ,b]  (2.4) 
a = l  FsaJ[0,  a] s t e F  

The sum over connected graphs can also be resummed: 

F~c~[O.a] s t ~ F  L ~ [ O , a ]  F:.LaI-=L s t e L  s ' t ' ~ F \ L  

= Z l-[ ~l,t ]-I (l+~#s',')-J[O, a] 
L6.L:'[O,a] s t ~ L  s't'~C~(L) 

(2.5) 
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where the last equivalence defines J[-0, a]. Inserting (2.5) into (2.4) yields 

b 
K[0, b] =K[1 ,  b] + ~ J[0, a] K[a+ 1, b] (2.6) 

a=l  

In (2.6) the factors K[b, b] and K[b + 1, b] are to be interpreted as equal 
to 1. Separating out the a =  b term in (2.6) gives (for b ~> 1) 

b--1 
K[O,b]=K[1, b]+ ~ J[O,a]K[a+l,b]+J[O,b] (2.7) 

a=l  

(The middle term on the right side is taken to be 0 if b = 1.) 
Substitution of (2.7) into (2.2) results in 

I '~ 1 G~(0, x ) - - - ~  zIR~ x+ 2 zl'~ ~o 2 zIR'l g [ l ,  le)l] 
R0~0 co:0 ---r x L.- i  R ~ o ) ( i )  

I~1~1 
I Icoi I Io~1-- 1 

+ 2 zl~t __[I ~ ~ ziR't ~ J[0, a] K[a+ 1, Icol-I 
co:0 --* x L i  Ri~o)(i  ) a=l  
L~ol ~ 2 

i[col ] 
+ ~, z i~ ~ ~ z IR'l J[0, leo1] (2.8) 

o):O~ x Rz~o9(i) 

The first term on the right-hand side is due to the contribution to (2.2) 
from the trivial zero-step walk, and the other terms are due to the walks 
co with [co I >~ 1. 

Denoting G~(O, O) by 

g~-G~(O,O)= ~ z Irt (2.9) 
T~0 

and writing 

I Iml 1 Hz(O,x)- ~ zl~l =l~0 y'  z IR't J[0,[col] (2.10) 
w : O ~ x  L-i Rz~co(i) 

we can write the first and last terms on the right side of (2.8) as g~6o, x and 
H~(0, x), respectively. The second term on the right side of (2.8) is equal to 

F, z'R~ Y~ 6z(u, x) 
Ro~O (O,u) 

where in the sum over (0, u) we sum over nearest neighbors u of the origin 
for the nearest-neighbor model, and for the spread-out model over all u for 
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which {0, u} is a possible bond in a tree (i.e., u sDL\{0} ) .  For the third 
term on the right side of (2.8), we consider co to be composed of an initial 
a-step walk col from 0 to (say) u, followed by a single step to (say) v, and 
then a final portion (possibly consisting of 0 steps) 6o 2 from v to x. The 
term in question is then equal to 

(u,v) a h : 0 ~ u  Lt  Rt~(o(t) 
Imll 1> 1 

{ • E zl 2, 2 
co2 :V~x  l 0 Ri~o3(i ) 
[~21/> 0 

= Z F~ IL(O, u) Gz(v , x) 
(u,v) 

Summarizing, (2.8) can be rewritten as 

ZIR'~] J[O, leo,l]} 

zrR'r] K[O, rc%l ] } 

Gz(O, x) = ~)o,x gz + Hz(O, x) + zgz ~ G(u,  x) 
(O,u) 

+ z ~ rL(o, u) Gz(V, x) 
(u,v) 

(2.11) 

2.1.2. The Expansion for Animals. For lattice animals the 
derivation of the expansion requires some modification due to the fact that 
an animal, unlike a tree, does not in general have a unique backbone in the 
sense of Section 2.1.1. The modification involves representing an animal as 
a "string of sausages," as has been done for percolation clusters, for exam- 
ple, in refs. 6 and 26. To describe this representation, some definitions are 
needed. 

A lattice animal A containing x and y is said to have a double connec- 
tion from x to y if there are two distinct (i.e., sharing no common bond) 
self-avoiding walks in A between x and y, or if x = y. A bond { u, v } in A 
is called pivotal for the connection from x to y if its removal would discon- 
nect the animal into two connected components with x in one connected 
component and y in the other. There is a natural order to the set of pivotal 
bonds for the connection from x to y, and each pivotal bond is ordered in 
a natural way, as follows. The first pivotal bond for the connection from 
x to y is the pivotal bond for which there is a double connection between 
one endpoint of the pivotal bond and x. The endpoint for which there is a 
double connection to x is then the first endpoint of the first pivotal bond. 
To determine the second pivotal bond, the role of x is then played by the 
second endpoint of the first pivotal bond, and so on. 
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Given two sites x, y and an animal A containing x and y, the backbone 
of A is now defined to be the set of pivotal bonds for the connection from 
x to y. In general this backbone is not connected. The ribs of A are the con- 
nected components which remain after the removal of the backbone from 
A. An example is depicted in Fig. 2. The set of all animals having a double 
connection between x and y is denoted ~x, y- We write 

a X g'~ = Z IAI g~( ' Y ) =  Z ZlZ)I' g~(0 ,0)=  ~, (2.12) 
De~x, j ,  A~O 

Let B be an arbitrary finite ordered set of ordered bonds: B = ((ul, Vl) ..... 
(u/st, vl~t) ). Let Vo = 0 and uta I + 1 = x. Then 

G:(0, x ) =  ~ z 'B' [iSI ~ Z [D'[] K[0, iB,] B:[Bi >10 L i f O  Dz~v~,Ut+l A 

where now in the definition of K[O, IBI] in Eq. (2.3), 

O 1 if D, and D, share a common site 

~s, = if D s and D, have no common site 

Define 

I IBI 1 ~ ( 0 ,  y)= ~ z LBt Ho ~ z ID't J[0, [Bt] (2.13) B:IBI >~1 L i  D~vl ,u~+ 1 

A calculation similar to that used to derive (2.11), using (2.6), gives 

= " 0  " 0  G~(O,x) gz( , X ) + f f l a ( O , x ) + z  ~ g ~ ( , u ) G ~ ( v , x )  
(u,v) 

+ z ~ fliT(O, u) GT(v, x) (2.14) 
(u,~) 

l 

Fig. 2. Decomposition of a lattice animal A containing x and y into backbone and ribs. The 
backbone is drawn in bold lines. 
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The analogy between (2.14) and (2.11) becomes more apparent if we 
define 

and 

r/~,(~ u) = g~(O, u)(1 - G,o) 

~(o, u)= g~,(~ .)+ D~(o, u) 

Then (2.14) can be written 

G~(O, x) = g~o,x + H~(O, x) + zg~ ~ G~(v, x) 
(O,v) 

+ ~ E r/~(0, . )  a;(~, x) 
(u,~) 

(2.15) 

(2.16) 

(2.17) 

(a) 2.2. Bounds on 17 (0, x) 

In this section bounds are obtained for H ~ ( 0 ,  x} simultaneously for 
both the nearest-neighbor and spread-out models. The label L for 
spread-out models will be omitted. The bounds for lattice trees are dis- 
cussed in detail in Section 2.2.1, and we comment in Section 2.2.2 on the 
modifications needed for lattice animals. 

2.2.1. Diagrammatic Bounds on rl~(0, x) for Trees. We 
denote by LgN[0, a] the set of laces in ~ [ 0 ,  a] consisting of exactly N 
edges, and write 

JN[o, a3= Z 1-[ % [I (l+~Us,,,) (2.~8) 
L~ C~N[O,a] s t ~ L  s ' t ' ~ ( L )  

and 

H(N)tOz , ,x)=~o:o~x2 zJ~)i I-I 2 zjR'f J~[O, lool] (2.19) 

[col/> 1 

Then from (2.10) and (2.5) we have 

Hz(O, x)= ~ H~N)(o, x) (2.20) 
N = I  

This is an alternating series, since for L ~ 54'N, 1-I,,~ L ~s, is either ( -  1 )N or 
0. However, we will simply bound the series absolutely. For a nonzero con- 
tribution to H~N)(O, x), the factor I-Lt~L ~st enforces intersections between 
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the ribs R~ and R,, and as N increases, the number of intersections 
increases. 

To bound the term (1) Hz (0, x), we proceed as follows. There is a 
unique lace consisting of a single edge, so by definition 

Io[ 1 o) zl~< ~ ~ J//0.,o,I 1-1 ( 1 + % , )  (2.21) 
co: 0--+ x t... R ~  co(i) O < ~ s < t ~ ] o ) l  Icol >/1 (s, t) # (0, Io21) 

The factor a#o. i~ol gives a nonzero contribution only if Ro and Rl~ol intersect, 
and the final product in (2.21) disallows any further rib intersections. We 
first consider the case x # 0. Relaxing the latter restriction somewhat and 
overcounting an enforcement of the former gives the upper bound 

v o : O ~ x  R o ~ O , v  Rio[ ~ x , ~  I~ol > 1 

R t ~ ~o( i ) ,~O,x  1 <~ s < t <~ Icol --  1 

Now 

and similarly 

Also, 

~. z IR~ v) 
R o ~ O , v  

y, zl<~ 

E 
( o : O ~ x  
Icol >i 1 

] z E zl.,I 13 
i = 1  R t ~ o ) ( i ) , ~ O , x  l ~ < s < t ~ < l e o l - - I  

I Icol ] 

co: O ~  x L R ~ o 3 ( i )  O<~s < t <~ leo[ 
IoJq >1 1 

(1 + % )  

~< Gz(0, x) 

(1 + % , )  (2.22) 

(14- %) IEIRol = I R ~ I  = O] 

Thus, for x # 0, we have 

IH~I/(0, x)l <~ ~ Gz(O, x) Gz(x, v) Gz(v, 0) (2.23) 
v 

When x = 0  in (2.21), we can find vr v # 0 ,  since I(ol >~ 1. We divide 
co into two parts col and co2, with col= (0=col(0),  col(l) ..... co~(Icol[)=v) 
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and (.02= (v = co2(Iohl), o92(1o~a] + 1),..., ~2(1~it-t-Ic%t) = 0). A severe over- 
counting with respect to v gives 

Icot[ Icoll + Ico2] 

iJT '(o, o){ .< 2 2 Z I] 2 
v ~ O  C O I : O - + v  i = 0  R i ~ O ) l ( t )  j ~ [ c o l l + l  R j ~ o ) 2 ( j )  

CO2: V ~ 0  

• I-I (1 + % t  
O-<.<s < *'~< Imll + Ico21 
(s , t )  r (0,1~~ + Ico21) 

< ~ G=(O, v) G=(v, O) (2.24) 
vr 

where in the second step we relaxed the nonintersection restriction between 
ribs of co~ and 0) 2, and bounded the sums over col and O)z by G~. Since 
G,(0, 0)1> 1, we can now write (2.23) and (2.24) together as 

]H~(~)(O, x)l < ~  {G~(O, v) G~(v, x) G~(x, O)-I [O=v= x] g3} 
p 

(2.25) 

A similar strategy can be used to bound H~N)(O, x )  for N >  1. Each of 
the N factors in the product I-I,,~L q4, in JN imposes an intersection of ribs. 
The situation for N = 2 is shown in Fig. 3a. For  a lace L = (0tl, s2 I~o1 ) con- 
sisting of exactly two edges, there are two generic configurations possible 
with 1-I.,,~Lqls,r one for the case s2<t~ and the other for s2=tl. For 
general N>~ 2 there are similarly 2 N- i generic configurations which con- 
tribute to H~N( The contribution due to each type of configuration can be 
bounded in essentially the same way, and we illustrate this bound in detail 
only for the case of N =  2 with s2 = t~. 

The contribution to H~ 2) due to laces with s2 = t~ can be written 

i rcor 1 icoi-1 
2  'co' __FI ~ 2 z,",, 2 1-I 

co: 0 --* x t -  R i ~ c o ( i )  s = i s ' t '  e ~ ( O s ,  s Iw[ ) 
IcoI >t 2 

I IcoI I Ico]- 1 
CO: 0 --* X L R i ~ co ( i )  S = 1 

]col >t 2 

( 1+ % , , )  

%,%1~<K[0, s] K[s, (~o13 

(2.26) 
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O = S  t S 2 ac t "/'2-- I~1 

Hara and Slade 

0 X 

o = s  I s2=~ I ~a=l,~l 

0 X 

(a) 

o x 
, (I) h ( o , x )  - 

X 

h z (o,x) = + 
o o x 

(O,X) = 0  -t- 
X 0 

+ o ~ X +  o ~ x  
(b) 

Fig. 3. (a) The two generic laces consisting of two bonds, and a schematic diagram showing 
the corresponding rib intersections for a nonzero contribution to//~2)(0, x). (b) Diagrammatic 
representation for h~ u), N =  1, 2, 3. Sums over vertices are constrained to disallow the coin- 
cidence of all vertices on any loop. On the left, the laces giving rise to the corresponding terms 
in h~ N) are shown. 
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Let y be a site where R0 and R, intersect, and let/~Rs(o(s), y) be the back- 
bone of R~. For ~1~1 va0, RIo~I must intersect R~, and hence there must be 
a rib emanating from a site on the backbone flR,(co(s), y) which intersects 
Rio~l (see Fig. 3a). Now, by arguing in a similar fashion to the case N =  1, 
(2.26) can be bounded above by the second term in h~2)(0, x), depicted in 
Fig. 3b. 

In general 

ja1 )(o, x)l x) (2.27) 

where for N~> 1, h~N)(0, X) is given by a sum of 2 N-  t diagrams, each con- 
taining exactly N nontrivial loops. These diagrams are shown in Fig. 3b for 
N =  1, 2, 3. The propagators in the diagrams are all independent. More 
precisely, for ui, v~ e Z d, let 

Al(0, Ul ,Vl)~ 

/)1 

= ~ (Gz(O, ul) Gz(u~, vl) Gz(Vl, y) Gz(y, O) 
Y 

- -  I [0  = b/1 : u 1 = y ]  g ~ )  

A 2 ( t t i _  1 ,  vi_l, ui, vi) 

-=A~I)(u,-1, vi-1, ui, vi)+A~2~(ui_l, vi 1, ui, v,) 

lAi-- 1 ~ Ut 

U l - - l ~  

Uz 1 ~ U i  

Ui lYt- 1 ~ ~l 

= ~ ( G ~ ( u i _  l ,  y )  G ~ ( y ,  v , )  Gz(v~,  u~) G z ( u i ,  v~_ l)  
Y 

- I [ v i _  1 = u i _  1 = vi  = ui = y ]  g~)  

+ ~ (Gz(u,_ l, vi) G~(v,, ui) G:(ui, y) Gz(y, vi_ ~) 
Y 

- IEve_  1 = us_  1 = vi = ue = y ]  g 4 )  

$22/59/5-6-26 
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and 

A 3 ( v i ,  ui,  x ) = - A ~ l ) ( v i ,  ui,  x ) - } -A~2) (v i ,  ui, x) 

Then 

U z ~  

U i ~  X 

+ 

X U z ' ~ , a ~ t ~ % a ' ~  

= ~ [Gz(uz, y) Gz(y, x) Gz(x, v i)-  I[vi= x=ui= y] g3] 
Y 

"Jff 2 [ G z ( u i ,  x )  G z ( x  , y )  G z ( y  , vi) --  I[~) i = X = U i ~--- 23  g~] 
Y 

h~X)(0, x) = �89 0, x) 

and for N >~ 2, 

x)= 

(2.28) 

AI(0, Ul, Vl) 
Ul,Vl,..., u N l,VN-1 

N--I  

X U A 2 ( b l j - l ' O j - l ' b l j ' l ) j ) A 3 ( I J N - l ' b t N  1, X)  ( 2 . 2 9 )  
j = 2  

Combining (2.27) and (2.20) gives the fundamental bound 

IHz(0, x)l ~< ~ h~N)(O, x) (2.30) 
N ~ I  

2.2.2. D iagrammat ic  Bounds on nz~(0, x)  for Animals.  For 
lattice animals the diagrammatic bounds on H~ are more complex than the 
corresponding bound (2.30) for trees, due to the more intricate nature of 
possible rib-rib intersections for animals. The diagrams which arise in 
bounding H a are closely related to the diagrams encountered in ref. 6 for 
the analogous percolation problem. 

As in (2.19), we define H~z "(N) by replacing J by JN in (2.13), for N>~ 1. 
In addition, there is the term H~ '(~ from (2.16). Thus, we have 

H (0, x)= x) 
N = 0  

The basic tool used to estimate Ha '(N) is the lattice animal version of the 
van den Berg-Kesten inequality (2v) stated in the following lemma. The 
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proof of the lemma is essentially the same as the proof of the first-order 
skeleton inequality sketched in Section 1.3. 

[ . emma 2.1. Given sets of lattice paths E~ ..... E,,  let ~ ( i=  l ..... n) 
be the set of all animals which contain a path in E;, and let sr be the set 
of all animals which contain distinct (i.e., sharing no common bond) paths 
in each of E 1 ,..., E n. Then 

n ] 
A ~ ~ "  i =  1 A;  ; 

ProoL Given any animal A ~ ~4, it is possible to decompose A into 
animals A1,..., An which are distinct in the sense that no two share a com- 
mon bond, and with A;Es~; ( i=  1,.,  n). This decomposition is in general 
not unique, but it can be made unique if the decomposition is formed via 
some specific algorithm. An example of such an algorithm is the following: 
(i) Out of all possible decompositions, consider those for which [AlJ is 
largest, and of these, consider those for which IA2t is largest, and so on. 
(ii) From the reduced set of decompositions obtained in step (i), choose the 
A1 which is lexicographically largest in the sense that it contains the 
lexicographically largest bond not found in any other At; then repeat for 
the compatible A 2 ' s  , and so on. 

This provides a mapping which associates to each animal A ~ d an 
n-tuple of animals A1, . . .  , A, with [All + [A2[ + - . -  + [A,] = IA[ and A,s  s~,. 
Since A = At w ..- w A,, each resulting n-tuple corresponds to exactly one 
animal A e sJ. Hence, by overcounting we have 

Z z'AP-< Z ... ~ ~lA,l+lA2J+ +IA.j | 
A E ,~t" A 1 ~ ~ '1 An~dJn 

Now, to bound the N = 0  term Hz~'(~ x), we simply note that by 
Lemma 2.1 and the definition of g~(0, x) in (2.12), 

H~'(~ x) = ~ zrDl[1-CSo, x] 
D c ~o,x 

~< G~(O, x) z (1 -6o,  x) =- hz~'(~ x) (2.3~) 

For the N =  1 term, by definition we have 

J /L~'"~(0, x) = E S~ __[I ~ ~ ~J"~ %,-J H 
B : I B ]  ~> 1 , , DteNviu +l O<.s<e<~IBI 

st C OIB[ 

(1+%) 
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The final product on the right side is bounded above by 

1-I 
l < ~ s < t < ~ l B l - 1  

(1 + ql~t ) I[D~ ~b u~, ViBi; i =  1,..., IBI -- 1] 

and hence 

IH~'(1)(O, x)l ~< ~ Gza(ul, VlBI) ~ Z ID~ 
Ul, rIB [ DO E ~0,Ul 

• Z zl~BII[_Doc~DkBi 4:~] 
DIB ] E .@VlBL , X 

<~ ~ G~(u,,vlBI)E Z zlD~ 
ul,v[BI Y D0 ~ ~0 ,  u 1 

x ~ ziZ~lB'lI[DiBi ~ y] (2.32) 
DIBI E ~2'vIB I ,x 

For Do~o,u~ to contain the site y, there must be a site w~ and distinct 
paths in D O from 0 to Ul, 0 to w~, w~ to y, and w I to Ul. Thus, by 
Lemma 2.1, 

zlD~ y] <~ G~(O, ul) ~ Ga(O, wl) G~(wl, Ul) G~(wl, Y) 
DO ~ ~0, u I Wl 

Employing the same analysis on the other factor of (2.32) gives 

H~'(1)(0, x) ~< 0 ~ %  x - h~'(l)(0, x) 

Similarly, it can be shown that 

H a ' ( N ) ( o ,  X ) < ~ h a ' ( N ) ( o ,  X ) ,  N > ~ O  (2.33) 

where, for N>~ 2, ha'(N)(o, X) is given by a sum of 5 N 1 diagrams, which are 
related to the corresponding diagrams for percolation. This leads to 

IH~(0, x)i ~< ~ ha'(N)(o, X) (2.34) 
N ~ 0  

We illustrate the diagrams contributing to h a'(2) in Fig. 4, but omit the 
detailed description of ha '(N) for N > 2 .  While h~ '(1) can be bounded using 
only the triangle diagram, higher orders require the square diagram. 
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(o, x )  = 0 X 

1495 

+ o @ x  + o 

+ X 

Fig. 4. Diagrammatic representation of h~'l~)(0, x), Sums over vertices on unshaded loops 
are constrained to disallow the coincidence of all vertices on the loop. In the last diagram, 
there is no vertex at P. 

2.3 .  B o u n d s  on  hCzN)(O, X) 

In this section, bounds are obtained for h~N)(0, x) for both the 
nearest-neighbor and spread-out models of trees. As usual, the label L for 
spread-out models is omitted. Bounds on h~'(u~(0, X) can be obtained in a 
similar fashion, but we omit the details of these lattice animal bounds. 

We need bounds o n  ~xh~N)(O,y) and Zx Ixl2h~N)(O,x)  . The first of 
these will be used with (2.30) to bound //~(0, x), and the second will be 
used to bound the second derivative with respect to k~ of the Fourier trans- 
form 

- Z / L ( 0 ,  x )  e'* x 
x 

The basic operation used in obtaining the bounds is to repeatedly apply the 
simple inequality 

~ f ( x )  g ( x )  ~<sup If(x)l  ~ [g(y)[ (2.35) 
12 

The method closely mirrors that used in refs. 1 and 6 to estimate analogous 
diagrams which occur for self-avoiding walk and percolation, respectively. 

The upper bounds obtained are in terms of the quantities given in the 
following definition. 
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D e f i n i t i o n  2.2. For l e Z  d we define 

7"l = ~, Gz(O, x) Gz(x, y) G=(y, l) - 6o, l(g~) 3 
x ,  y 

W, = ~ Ix( 2 G~(O, x) G.(x, y) G~(y, l) 
X, y 

S, = ~ a~(o, w) G=(w, x) G=(x, y) G~(y, l) -- C}od(g~) 4 
w, x ,  y 

S = So, T = To, W = W o 

= sup St, T = sup Tl, W = sup Wt 
l c  Z d l ~  Z d l e  Z d 

The following lemma will be used with (2.30) to bound 17z(k ) and 
~?~H~(k). A similar lemma can be proved for lattice animals, involving 
more complicated upper bounds analogous to those encountered in per- 
colation/6) The major difference for lattice animals is that the upper bound 
corresponding to (2.38) involves an additional quantity 

/t-= sup Hi--- sup ~ I x - y l  2 y (2.36) 
l E Z  d l c Z d x ,  y 

0 

which is needed to bound diagrams like the last diagram in Fig. 4. 

I_emma 2.3. (a) 
T, N = I  

~h~N)(O,x) <~ 2N--1TSgN 2, X>~2 
x 

(b) 

Proof. 

(2.37) 

]xl2h~N~(o ' x)<~ fW, N =  1 (2.38) 
N x (2  +IN2HzSS N 2, N>~2 

(a) The case N =  1 follows immediately from (2.28). For 
N>~ 2 we sum (2.29) over x and apply (2.35) repeatedly to obtain 

1 ~h~N)(O,x)~ ~ Al(O,u~,vl) .  sup Z A2(O, wj - l ,  uj, vJ) 
x u l , v l  j=2 t-wj 1 uj ,vj  

X sup E A3(0, W N  l ,  X )  

WN 1 x 

<~ 3(28)  N-2  2T  
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(b) For N =  ! the desired inequality follows from (2.28). To illustrate 
the method for N~>2, we consider in detail only the case N = 3 ;  other 
values of N are handled similarly. 

For N =  3, by (2.29) and the triangle inequality we have 

E [Xt2  h ~  3 ) (0 ,  X)  
x 

<~3y, Y (lult2+lv~-ull2+lx-v~l 2) 
x U l , V l , u 2 , v  2 

xAI(O, ul, vl)A2(ul,vl ,  u2, v2) A3(v2, u2, x ) (2.39) 

Substitution of--2~(1>-~A(2)--~2 for A2 and A~I~+ A~ 2~ for A3 gives four terms, 
of which we consider only the term TI involving A(2 a~ and A~ 1). A similar 
argument gives the same upper bound as that we will obtain for T~ for the 
other three terms. Define 

u a ~ v 2  

B(Ul, vl, u2, v2)= 

U 1 ~ u 2 

= G~(Vl, u;) Z 6~(u~, w) 6~(w, v2) 
w 

A regrouping of the propagators contributing to T 1 gives 

T 1 = 3  z Y~ {]ul]ZA~l)(ul,vl,0)A(21)(v2, Uz, Vl, ul)A1(x, v2, u2) 
x Ul .  O l , U 2 , t  2 

+ A~(O, ul, v l ) Iv2-ul[2B(ul ,  Vl, u2, V2) Al(X , td2, U2) 

+ At(0, .1,  vl) A~l)(u,, vl, u2, v 2 ) I x -  v2j 2 A~l~(v2, u2, x)}  (2.40) 

The first and last terms on the right side are bounded by WSS, and 
the second term is bounded by 4ff 'S 2. We now illustrate this for the second 
term. The other terms are similar. First the triangle inequality is applied 
again in the form IU2 - -  /,/1[ 2 ~ 2(IV2 -- Wl 2 + [W - b/ l12) .  Each of the resulting 
terms is bounded in the same way. For example, to estimate the !v2-w[  2 
term, we use translation invariance and (2.35) to obtain the bound 

y 
Ul, ~I w ~2 

x ~ AI(0 , x, u2) 
x, u 2 

<~s~s 
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This gives T~ ~< 3(2I~SS+4S2Ig 7) ~< 18SSW, and hence (2.39) is bounded 
above by 72SSW. 

A factor of 2 u - 1  in the bound (2.38) for N > 2  comes from the 2 N-I 
diagrams in h (u) and the factor of N 2 from application of the triangle 
inequality as in (2.39). The additional factor of 22 accounts for the need to 
apply the triangle inequality as for the second term in (2.40). | 

Combining Lemma 2.3 with (2.30) leads to the following result. 

Lemma 2.4. (a) 

T+2TS ~, (28) N-2, S = 0  
s ~ ...-- J N = 2  

[c~,.//_,(k)l ~---[ oo (2.41) 
W+ 81~7S y. N2(2N) N 2 s = 1, 2 

N = 2  

(b) 

, /}z(0)- ' f ik) l~<~d ~ k•{W+81gzS ~ N2(2') N-?] (2.42) 
, z = l  N = 2  

ProoL (a) By definition, 17~(k)=ZxH~(O,x)e ikx, and (2.41) 
follows immediately from (2.30) and Lemma 2.3. (For s = 1, we use the fact 
that for x e Z  d, Ixl ~< Ix12.) 

(b) By symmetry, (2.30), and (2.38), 

N = I  

k~,x~ h(N)(O x) 
~ ~N=I x2  ,=1 z , ,  

1 oo 2 2 (N) 

# = 1  x 

' E2 ] - -  E W+81~S ~ N2(2S)N 2 | 
2d ~ = 1 k 

N = 2  

3. P R O O F  OF T H E O R E M S  1.1 A N D  1.2 

Since finiteness of the square diagram at the critical point is known 
to imply that ~=1/2 in the sense that (1.15) holds, ~ 18) to prove 
Theorems 1.1(a) and 1.2(a) it suffices to prove that the square diagram is 
finite at the critical point, and to obtain the infrared bound. By the 
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monotone convergence theorem, a bound on the square diagram which is 
uniform in z < z~. ") implies the same bound at the critical point [see (3.3)3. 
The bulk of the proof consists in obtaining such a uniform bound. In the 
course of the proof of this uniform bound, the infrared bound is also 
proven. As will be shown in Section3.3, the proof also yields 
Theorems 1.1(b) and 1.2(b), with little more effort. 

We give the proof of these results only for the case of spread-out lat- 
tice trees above eight dimensions. With minor changes, the same methods 
apply to nearest-neighbor trees and animals in sufficiently high dimensions, 
and to spread-out lattice animals above eight dimensions. The proof has 
the same general structure as that used for the self-avoiding walk in ref. 2 
and for percolation in ref. 6, although the details do vary. 

3.1. General Structure  of the Proof 

For the remainder of Section 3 we restrict our attention to spread-out 
lattice trees in a fixed dimension d >  8. A uniform, bound on the square 
diagram below the critical point is a consequence of the following 
Lemma 3.1, Lemma 3.2, and Proposition 3.3. Before stating these results, 
we introduce some notation. Let ](2LJ denote the cardinality of 
(zd('~ ~"~C)\{0}, and let 

(2re) 1/2 
z L -  3e I~QL] 

Then ZL "" L -a. Define 

and 

1 
e ik .  v 

( 1 ,]J,~l=i dak eiX.(v x) 
CLfx, Y)=~ :~ ,E  \[(2LI j j~ . . . .  3~(2~)d i 2 ~ L ( k  ) 

Here the sum over co is the sum over all simple random walks from x to 
y, with co(i+ 1)--co(i)e~L\{0}.  To simplify the notation, we will usually 
drop the label L. Recall that by definition g , =  Gz(0, 0). The three basic 
results are the following. 

Lemma 3.1. The two-point function satisfies the bound 

Gz(x, y)<~gzCL(X, y ) for z<~zL (3.!) 
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In addition, 

3e 1 
gz <~ (2g)1/2 for z ~ < - - e  lOLl (3.2) 

Since g~ is a power series with positive coefficients, it follows that dgz/dz is 
finite for z < (e loci )-i. Since, by (1.1), Z(z) ~< (d/dz)[zgz], it follows that 
;~(z) < oo for z < ( e  It'Ll) -1, and hence z~.>~(e If2LI)-I >zc .  

L o m m a  3.2. For z < z,, S, Wz, and gz are continuous in z. 

P r o p o s i t i o n  :3.3. For any d > 8  there is an Lo=Lo(d, 01) such 
that if L ~> Lo, then for any fixed z e [zc, zc), 

P4 =:> P3 

where P~ is the statement that the following inequalities hold: 

S ~< 400c~ "s 'K L l -J ,  W~< 4000c~ �9 Kw �9 L 3-d, gz<~4~ 

Wt<<.eK'L 3-d for Hllll <~M(z,L) 

In Proposition 3.3, Ks and Kw are constants which are defined in the 
Appendix, LemmaA.1. They are defined in terms of the Gaussian 
analogues SG and W~ of S and W, given by 

and 

s ~ -  y~ clio, x) CL(x, y) CL(y, w) CL(w, 0) - c~(0, 0) 4 
x,  y ,  w 

wG,,- S Ix[: cL(0, x) CL(x, y) CL(y, l) 
X, y 

The numerical constants appearing in P~ are somewhat arbitrary. The 
(large) constant K' is determined in the proof of the Proposition. The value 
of M(z, L) is chosen sufficiently large so that W~<<.3K'L 3-a for II/lll> 
M(z, L). This is possible because the two-point function decays exponen- 
tially for z < zc (with a decay rate which depends on z(16)). The statement 
P~ is, for fixed z < Zc, a statement of finitely many inequalities. 

For lattice animals (as for percolation(6)), P~ must be augmented with 
a bound on the quantity Ht defined in (2.36). 

We now explain how together Lemmas 3.1 and 3.2 and Proposi- 
tion 3.3 imply a uniform bound on the square diagram below the critical 
point. First, Lemma 3.1 implies that P3 holds for z <<. z L. To see this, note 
that it follows from the definition of Kw in (A.4) that WG <<.KwL 3-a, and 
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hence by Lemma3.1 we have W~g3Wc<~64Kw L3-d. The inequality 
g~<4  follows from (3.2). For S, it follows from (3.1), (3.2), and (A.3) that 

S= ~, GL(O, x) GL(X, y) GL(y, W) GL(W, 0){1- - I [X=  y =  W=0]}  
w, x, y 

~<(g~)4[ 2 CL(O,x) CL(x, y)CL(y,w)CL(w,O)--CL(O,O) 4] 
w, x ,  ) ,  

81e 4 
= (gz)4 SG ~ 4~ ---T KsL-d+ l 

which gives the desired inequality for S. For Wt, it is sufficient to show that 
g3 WG, l~43WG,! obeys the bound of P3 for all l~ Z a. This can be done by 
the argument of part (d) of the proof of Proposition 3.3, in Section 32, by 
putting [zl �9 I~1 = 1, gz = 1, H=(k) = 0 there. 

Now it follows from Proposition 3.3 (together with Lemmas 3.1 and 
3.2) ~hat there are forbidden regions in the graphs of S, IV, Wt, and g ver- 
sus z. For example, the graph of S cannot enter the rectangle [zL, z,.) x 
(1200Ks L-d+~, 1600KsL-d+l), and hence S~1200Ks L-d+~ for all 
z < z~. More generally, Ps holds for all z < z,.. It follows that 

[](z)=S+(gz)4~12OOKsL-~+l+44 for Z<Zc 

Since 

~ ( z ) =  Z Z E Z Z zlW+rr21+lr3F+lr41 (3.3) 
w , x , y  T l ~ 0 ,  w T 2 ~ w , x  T 3 ~ x , y  T4~N,O 

it follows from the monotone convergence theorem that [](zc)= lim . . . .  
(z) < oo. Note that we have in fact proven that S ~< 1200Ks L - j + 1  ~ 1, as 

promised in Section 1.3. 
In the course of the proof it will be shown that the infrared bound 

follows from P4. Since we will prove the stronger statement P3, this proves 
the infrared bound. The proof that v = 1/4 will be given in Section 3.3. 
In the next section we prove Proposition 3.3. Lemma 3.2 is an immediate 
consequence of the monotone convergence theorem, together with the fact 
that the two-point function decays exponentially below the critical point. 
Lemma 3.1 is proven as follows. 

Proof of Lemma 3.1. We give the proof for both spread-out trees 
and animals. By definition, Gz(x, y)=Zc~x, y z IcF, where the sum over C 
denotes a sum over all trees or animals (depending on which model is 
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being considered) containing x and y which can be constructed from bonds 
{u, v} with v - u e f 2 L \ { 0 } .  This sum is bounded above as follows: 

Gz(x , y)<~ ~' zl~<(gz)>l+l (3.4) 
c J : x ~  y 

where the sum Z '  is over all self-avoiding walks from x to y. Hence, for z 
such that zgz <<. 1/[~2LI, it follows from (3.4) that 

Gz(x, y)~ gz \LE2L] ] 

Bounding the sum over all self-avoiding walks by the sum over all simple 
random walks gives (3.1) for z such that Zgz < . 1/l~fl- 

Now gz (either for trees or animals) is bounded above by the 
corresponding sum over all embedded abstract trees, such that the origin 
is a vertex of the embedded tree. Thus, by Cayley's theorem (ref. 28, p. 75) 
and the inequality n! >. nne-~(2nn) 1/2, 

gz<~ ~ z"lQLLn(n+l) (n+l)" ~ ~ e(zl~'2Lle)n-I 
.=0 (n+  1)! ~< n=l (21r)l/2n3/2 (3.5) 

The first inequality follows from the fact that there are (n+  1)" l / (n+  1)! 
unlabeled abstract trees with n edges; the factor of (n + 1) is due to the fact 
that any vertex can be mapped to the origin, and the factor 1s 
corresponds to the fact that each edge of the abstract tree can be mapped 
to at most If2LI bonds. By (3.5), 

e oo l 3e 1 
~ n - ~ <  for z ~ < - -  g~ ~< (2n-) 1/2 , I (2re) 1/2 e [/2L I 

which gives (3.2). Hence, for z<~zL, Zgz<~ 1/It?LI and (3.1) holds. | 

3.2. Proof  of  Proposi t ion  3.3 

In this section we prove Proposition 3.3, which together with Lem- 
mas 3.1 and 3.2 implies that P3 holds. We will also show that the infrared 
bound follows from P4. This is sufficient to prove the infrared bound, since 
the stronger statement P3 holds. As usual in Section 3, we restrict our 
attention to spread-out lattice trees. We begin with a lemma. 

L e m m a  3.4. I f z < z c  and we assume e4, then there is a constant cl 
(which does not depend on K') such that 

S - s u p S t < ~ c i L ( ~  d)/2 
l 
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ProoL By P4, So ~ cL(l d)/2 (C= 1600Ks), so it suffices to consider 
St for l r 0. Fix l r 0. Then 

dak 
S , =  j (27~) d [az(k)4 - (gz) 4] e ik`  

I dak = 3 (2~z) d ([Gz(k) - g~32 { [d~(k) + g~j2 + 2(g~)2} 

+ 4(gz) 3 ( ~ ( k ) -  4(g~) 4) e ~ k '  

<~ f ddk [Gz(k) - g~]2 { [dz(k) + g~]2 + 2(g~)2} + 4(g~)~ G:(0, l) 

= S +  4(gz) 3 G~(0, l) 

(All integrals with respect to k extend over I - i t ,  n]d.) Now, by symmetry, 

G~(O,l) 2~<1 Z G~(O,x) 2~< 1 1 
2 d ~  ~ ~-~gS 

so by P4 

St<~S+4 \ i - ~ J  <~clL(t-dl/2 | 

By Lemma 3.4, it follows from (2.41), (2.42), the fact that 7"~ ~- aS, and 
the assumption P4 that for L sufficiently large there are constants c2, c3, 
and c 4 (which do not depend on K') such that 

s ~ ~C2 L l - d '  S = 0  
IDfl/z(k)l ~< ( c 3 L  3 -d, S = 1, 2 

and 

I/Iz(0) -- f lz(k)!  <~ c4 L3 -dk2 

(3.6) 

(3.7) 

These bounds will be used to show that, for fixed z e [zL, zc), -P4 implies 
P3. 

Fix z~ [ZL, Zc). Using the fact that the Fourier transform of a con- 
volution is the product of Fourier transforms, taking the Fourier transform 
of (2.11), and solving for Gz(k) gives 

Gz(k) - gz + flz(k) = gz + flz(k) (3.8) 
1 - z  ](2LI DL(k)[gz+lT~(k)] ~'z(k) 
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This equation implicitly defines Fz(k). Since Gz(0) = Z(z) e (0, oe), it follows 
from (3.8), (3.6), and the fact that gz/> 1 that for L sufficiently large 

Pz(0) = 1 - z I~LI l-gz + flz(0)] > 0 (3.9) 

Therefore 

G~(k) = g~ + 17z(k) 
PAk) - P~(o) + P~(o)  

g~ +/~(k) ~<. 
Fz(k) - [~z(O) 

1 1 + g j  1/Iz(k ) 

z 1~gLI E1 - D ~ ( k ) ]  + (g~)-~ E/l~(O)-/TAk) DL(k)] 

3e 1 + g,_ l f l z (k  ) 

~< (2~) U2 I-1 - i l L ( k ) ]  - -  I f l z ( 0 )  --  f l ~ ( k )  f i L ( k ) l  (3 .10)  

In the last step we used the fact that gz~>l and Z>IZL. Now, by the 
triangle inequality, the fact that !/SL(k)[ ~< 1, (3.6), and (3.7), 

I/Iz(0) --/l~(k)/)L(k)l ~< I f l ~ (0 ) l  " E1 - D L ( k ) 3  + I f l ; ( 0 )  - f l z ( k ) l  

<~ c2L~-dE1 - / ) L ( k ) ]  + c4L3 -dk  2 

By (A.1) 

k2~c5[1 --/SL(k)] (3.11) 

and hence by (3.6) and (3.10), if L is sufficiently large, then 

4 
0<~ Gz(k) <. (3.12) 

1 - DL(k) 

Combining (3.11 ) and (3.12) gives the infrared bound 

4c 5 
0 <. Gz(k) <~ --~ 

By (3.6), (3.9), and the fact that gz ~> 1, 

z LOLk ~< g z - z  Ir2LI < 
1 + g•'frz(0 ) 

~<I+O(L 1 d)<~ (3.13) 
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for L sufficiently large. Therefore 

Id~(k)-g~] = gz[1 - ~ ( k ) ] :  +/ l~(k)  

Fz(k) 

= gzz ls DL(k)[gz +/ ) , (k )]  +/Iz(k)  

P~(k) 
/I~(k) ] 

<~ ]Gz(k)[ . gzZ I(2LF IDL(k)[ + ~ I  

[fiL(k)[ + c2 L1 -d 
4 5  

1 - & ( k )  
(3.14) 

using (3.6), (3.12), (3.13), and P4- We are now ready to obtain the bounds 
of P3" 

(a) The bound on gz. By (3.9), (3.6), and the fact that z > z L, 

1 3e 
g_, < - - - / 7 , ( 0 )  ~< +c2L ~-~ (3.15) 

z r O L l  - 

The right-hand side is less than 4 if L is sufficiently large. 

(b) The bound on S. By definition, 

dak d k 2 S=f(--~)d[~ z( ) - -gz ]  {[Gz(k)+gz]2+2(gz)  2} 

By (3.12) and the bound (a) on gz, 

~z ,k ,+  ~12+2~g~)2-~42 I(- ~ 1 _ ~L~k, + ~ ) 2 ]  + 2 

With (3.14) this gives 

-15~(k) 
=800[SG+ [CL(O, 0 ) -  132 {[CL(O, 0 ) +  112+2}]  + c o n s t . L  2-2~ 

<~ 800(KsL l -a+ const. L 2 2d) 

using (A.2) and (A.3) in the last two steps. (See also the equation in the 
proof of Lemma A.1.) This gives S ~< 400~KsLI- d with e = 3. 
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(c) The bound on W. By definition, W = ~ x , y  jxl 2 Gz(O, x) G=(x, y) x 
G~(y, 0). In terms of the Fourier transform, this can be written (after an 
integration by parts) 

W = ~  2 f dak (-2~)d [6~dz(k)] 2 G~(k) (3.16) 

Differentiation of (3.8) gives 

~ , /7~(k)  gz+I )~ !k )6~z (k ) ]  2 

~<2 [a"D~(k)]2 [gz+Hz(k)]2 
+ 2 [a .Pz(k ) ]  2 

l#~(k) 2 ~'~(k) 4 
(3.17) 

By definition, 

[6o~,['z(k)] 2 ~< 2(z I~LI)2 { [~y/~L(k)]2 [g~ + /~ (k ) ]2  + [Ou/~(k)]2} 

(3.18) 

Since gz~> 1, it follows from (3.6) that for L sufficiently large, P~(k)-~ ~< 
~0~(k). Using (3.18), it follows from (3.17), (3.12), and (3.13) that 

[a~(~(k)] 2 ~< 50 [a"Etz(k)]2 + 1600 [a~/SL(k)]2 + 2500 [a"H=(k)]2 
[ I  - / ) L ( k ) ]  2 [ I  - - / )z(k) ]  4 [ I  - - / )L(k) ]  4 

(3.19) 

Using (3.19) and (3.12) in (3.16) gives 

~0r'~0 ~ r d dk F [a~/]rz(k)] 2 [a~/SL(k)] 2 [a. /)z(k)] :  ~ 

#=I [1 -/3L(k)]S/_] 

To bound the final term in (3.20), we note that by symmetry 0~/7~(k) 
is equal to zero for any k with k~ = 0. Denoting by ~: the result of replacing 
the #th component of k by zero, it follows from Taylor's theorem that 

~? ~l'Iz(k ) = O ~,lTz(k ) - ~ ~fIz(# ) = k~OZ flz(k * ) (3.21) 

where k* is a point on the line segment joining k and k. By (3.21) and 
(3.6), 

~ 2  2 r 6 - - 2 d  IO~l~z(k)[2 ~Kuc3 L 
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and hence by symmetry and (3.11), for d > 8  the last term in (3.20) is 
O(L 6- 2d) and is negligible compared to the K w L  3- d bound on W G from 
(A.4). The other term in the integral in (3.20) is also O(L6-2d), by (3.6) 
and (3.11). This yields the bound of P3 for W. 

(d) The bound on Wt. In terms of the Fourier transform, 

W, = - Y,d !((2~) d d ~  [#2d~(k) ] d.(k)2o e~ , , 
/~=l* 

Differentiation of (3.8) gives 

_ a . & ( k )  a~P~(k) 

Pz(k) 
0 P (k) 

+ 
P (k) 2 Pz(k) 3 

(3.22) 

Now 

and 

#,Pz(k) = - z  f & l  {o,DL(k)[g:  + Hz(k)] +/}L(k) 0~/7~(k)} 

a2~(k)  = - z  1s {a~/}L(k)[gz + Hz(k)] + 2a,bL(k) a,s 

+ DE(k ) a~/)~(k)} 

Arguing as for W, we have 

Wl<xc6f ddk l [ (2re) d [1 - /}L(k)]  4 ~ ]~2/}L(k)l + O(L3-d) rOu6L(k)] 

]0fl}L(k)] 2 + 0(L 6-2a) k~ 1 
+ O(L 3 d)+ -1 -- s  

 +c6 fd k la /SL(k)[ 
(2/1;) d [ i  - -  ) 0 L ( k ) ]  4 -j- C6 WG 

~c8L 3-d 

using (A.4) and (A.5) in the last step. 
We take K'=43c8/3. This proves the bound of P3 for Wl, and, as 

mentioned in the discussion following Proposition 3.3, this calculation can 
also be used to show that Wi satisfies the bound of P3 if z <~ ZL. I 

822/59/5-6-27 
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3.3. Proof  tha t  v = 1 / 4  

We continue to consider only spread-out lattice trees explicitly. 
Nearest-neighbor trees or animals, and spread-out animals, can be treated 
similarly. By definition [Eq. (1.9)], in terms of the Fourier transform, 

~ (z )2=_  ~ c~(~(O) (3.23) 
- 1 G ( O )  

Since /~(k) 1= [ g ~ + / ~ ( k ) ] - i  G~(k) and since by symmetry ~[ ' z (0)=  
8,/)~(0) = 0, it follows from direct calculation and (3.22) that 

d d 

~(z)~= [g~+_O~(o)]-~ d~(o)Y~ a,~P~(o)-Eg~+r)~(o)]-~ ~ a~.~z(O) 
p . = l  # : 1  

d 

= - z  lOLl [gz +/Tz(0)] 1 4~(0) y~ {~2DL(0)[g~ +/1~(0)] 
, u - - I  

d 

+c~2fl;(O)}-[gz+fI;(O)] ' E c~217~(O) 
#--1 

Since O~/SL(O ) ~ - L  2 for large L by direct calculation, it follows from 
(3.6), (3.13), and (3.15) that 

~(Z) 2 ~ Gz(0 ) ~-- Z(z) 

for z close to z~. By (1.15), this proves v = 1/4. 

APPENDIX .  B O U N D S  ON G A U S S I A N  Q U A N T I T I E S  

In this appendix we collect the estimates on Gaussian (simple random 
walk) quantities that we need to treat the spread-out models. Analogous 
estimates for the nearest-neighbor models are given in Appendix B.2 of 
ref. 10. 

We begin by recalling the definitions 

1 ~L(~) = F, e 'kx 

ddk eik.(y-x) 
CL(x, y) = % . . . .  ~ ( ~ ) d  1 - DL(k) 

SG = Y~ CL(O, x) CL(x, y) eL(y, w) CL(w, 0)--  CL(O, 0) 4 
x ,  y ,  w 

Wa = ~ Ixl 2 CL(O, x) CL(x, y) CL(y, O) 
X~ y 
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The estimates we need are given in the following lemma. (The lemma can 
likely be improved to the corresponding inequalities with e = 0, but these 
suffice for our purposes.) 

Lemma A.1. Fix d > 8 .  Then there are constants Ks, Kw, c5, c, 
and e ~< l/5 such that for all L >~ 1, 

k 2 ~< c5[1 - / } L ( k ) ]  (A. l) 

0 <~ CL(O, O) -- 1 <<, cL-d+~ (A.2) 

Sa <, K s  L-d+4~ (A.3) 

Wc ~ K w L - a +  2 + 5~ (A.4) 

: ddk ls~/SL(k)J ~<const.L -d+2+4" (A.5) 
J (2~) a [1- - / )L(k) ]  4 

Proof. The bound (A.1) is proved in ref. 6, Lemma 5.1. The bound 
(A.2) is proved in ref. 6, Corollary 5.8, and (A.3) follows from Lemma 5.7 
and the proof of Corollary 5.8 of ref. 6, using the representation 

ddk 
s c = f ( - 2 ~ ) a  [6"L(k)-- 1] 2 {[CL(N}-J- 1 1 2 + 2 }  

- [CL(0, 0)-- 132 { [CL(0, 0 )+  112+2} 

Finally, (A.4) and (A.5) can be proved just as in Lernmas 5.10 and 5.11 of 
ref. 6. | 
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